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1. Brief summary of the theory of scattering

1.1. Radial Schrödinger equation

The Schrödinger equation describing the motion of the particle scattered by a central,

spherical potential in units of h̄/2m = 1 is

[−∇2 + V (r)
]
ψ(r ) = Eψ(r ), (1.1)

where the Laplacian operator ∇2 in spherical coordinate is

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2
, (1.2)

with

L2 = − 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1
sin2 θ

∂2

∂ϕ2
. (1.3)

A solution of eq.(1.1) is then expressed in terms of a solution of the radial Schrödinger

equation ul(r) as

ψlm(r ) =
ul(r)

r
Ylm(θ,ϕ), (1.4)

where ul(r) satisfies

d2ul(r)
dr2

+
[
E − V (r) − l(l + 1)

r2

]
ul(r) = 0 (1.5)

and Ylm(θ,ϕ) are the spherical harmonics defined to be eigenfunctions of L2 and Lz.

1.2. Boundary condition and the phase shifts

Outside the potential range (r > r0), the radial Schrödinger equation reduced to that of

the free space and its solution may be any linear combinations of the two independent

solutions (one regular, the other irregular) of

d2wl(r)
dr2

+
[
E − l(l + 1)

r2

]
wl(r) = 0. (1.6)
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The two solutions P and Q of eq.(1.6) are related to the spherical Bessel (regular solution)

and Neumann (irregular solution) functions, jl(z) and nl(z), respectively, by

Pl(r;E) =
√

Erjl(
√

Er) (1.7)

and

Ql(r;E) = −
√

Ernl(
√

Er). (1.8)

The negative sign is attached to the definition of Ql for the later convenience. At large

distances, these functions behave as

Pl(r;E) −→ sin(
√

Er − lπ

2
) (1.9)

and

Ql(r;E) −→ cos(
√

Er − lπ

2
). (1.10)

The asymptotic form of the solution of eq.(1.4) at large distances is therefore

ul(r)
r�r0−→ A cos(

√
Er − lπ

2
) +B sin(

√
Er − lπ

2
)

=
√

A2 +B2 sin(
√

Er − lπ

2
+ ηl). (1.11)

Here the so-called phase shift ηl is introduced. The regularity of ul at the origin

determines the ratio B/A and the asymptotic boundary condition at r � r0 determines

the normalization
√

A2 +B2. In the theory of scattering, the proper asymptotic boundary

condition for the wave function is

ψ(r) r�r0−→ ei
√

Ez +
ei

√
Er

r
f(θ,ϕ). (1.12)

Correspondingly, the condition on the normalization of the radial wave function is

ul(r)
r�r0−→ eiηl sin(

√
Er − lπ

2
+ ηl) (1.13)

or equivalently

ul(r) = eiηl [cos ηlPl(r;E) + sin ηlQl(r;E)] , r > r0. (1.14)
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1.3. t-matrix

A more familiar expression of ul(r) with the same normalization as implied by eq.(1.14)

may be

ul(r) = Pl(r;E)−
√

Etl(E)R+
l (r;E), r > r0, (1.15)

where R+
l = Ql + iPl is related to the spherical outgoing Hankel function h

(1)
l (z) =

jl(z) + inl(z) by

R+
l (r;E) = i

√
Erh

(1)
l (

√
Er) (1.16)

and tl is the so-called atomic t-matrix defined by

tl(E) = − 1√
E
sin ηl eiηl . (1.17)

It is also possible to express ul(r) in terms of the k-matrix (corresponding to eq.(1.14)) or

s-matrix (if R+
l and R−

l = Ql − iPl are used instead of Pl and Ql).

Practically, the phase shift ηl is calculated in the following way. First, given a potential

V (r) and an energy parameter E, we integrate the radial Schrödinger equation numerically

from the origin with the regular boundary condition to obtaine a solution ul(r), which

satisfies
u′

l(r)
ul(r)

=
P ′

l (r) + tan ηl Q
′
l(r)

Pl(r) + tan ηl Ql(r)
. (1.18)

at r > r0 irrespective of the normalization, Now, equation (1.18) is readily solved with

respect to ηl.

1.4. Integral expression for the t-matrix

Another expression of the phase shifts, or equivalently the t-matrices, is obtained from

the integral form of the Schrödinger equation. The expression is never used for actual

calculations but is often useful in formal discussions. First we define a normalization

constant Λl by

Λl = lim
r→0

(2l + 1)!!ul(r)
(
√

Er)l+1
. (1.19)

Then from the Wronskian relation between ul and wl, which is a direct consequence of the

Schrödinger eqs.(1.5) and (1.6),

W [wl(r), ul(r)]
∣∣∣∣
r2

r1

= {wl(r)u′
l(r) −w′

l(r)ul(r)}
∣∣∣∣
r2

r1

=
∫ r2

r1

dr wl(r)V (r)ul(r), (1.20)
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where wl is either Pl or Ql, it follows that

tl(E) =
E−1

∫ ∞
0

dr Pl(r;E)V (r)ul(r)
Λl +E−1/2

∫ ∞
0 dr R+

l (r;E)V (r)ul(r)
. (1.21)

If ul is normalized as eq.(1.13), the denominator of eq.(1.21) simply gives a unity. Similarly,

k-matrix (or s-matrix) is obtained if R+
l (or Pl) is suitably replaced by a linear combination

of Pl and Ql (or R+
l and R−

l ).

2. Radial Green’s functions

2.1. Integral form of the Schrödinger equation

From the Wronskian relation eq.(1.20), it follows that

W [Pl(r), ul(r)] =
∫ r

0

dr Pl(r)V (r)ul(r) (2.1)

and

C − W [Ql(r), ul(r)] =
∫ ∞

r

dr Ql(r)V (r)ul(r), (2.2)

where the constant C depends on the normalization of ul. For the normalization implied

by eq.(1.13), C satisfies

C = W [Ql(r), ul(r)]r>R = W [Ql, Pl] eiηl cos ηl

=
√

E eiηl cos ηl, (2.3)

where the relation W [j(z), n(z)] = 1/z2 is used. In the following, we adopt this

normalization for ul. Now we multiply eq.(2.1) by Ql, multiply eq.(2.2) by Pl and add

them, obtaining

ul(r) = eiηl cos ηl Pl(r)− 1√
E

∫ ∞

0

dr′ Ql(r>)Pl(r<)V (r′)ul(r′), (2.4)

where r< and r> denote the smaller and the greater of r and r′. Equation (2.4) is reduced

to the expression given by eq.(1.14) when r > r0 is satisfied.

2.2. Green’s function

The quantity

g(r, r′) = −Pl(r<)Ql(r>)√
E

(2.5)
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appearing in eq.(2.4) is a radial Green function.

The expression which is reduced to eq.(1.15) for r > r0 is also obtained by replacing

Ql with R+
l − iPl:

ul(r) = Pl(r)− 1√
E

∫ ∞

0

dr′ R+
l (r>)Pl(r<)V (r′)ul(r′) (2.6)

Here the relation eq.(1.21), with the denominator of r.h.s. being a unity, is used. The

quantity

g+(r, r′) = −Pl(r<)R+
l (r>)√

E
(2.7)

in eq.(2.6) again is a radial Green function.

2.3. Boundary condition

The difference between two Green functions, g(r, r′) (standing wave Green function) and

g+(r, r′) (outgoing wave Green function), becomes clear if we consider the integral equation

of the form

ul(r) = Pl(r) +
∫ ∞

0

dr′ g+(r, r′)V (r′)ul(r′). (2.8)

The solution will satisfy eq.(1.14). On the other hand, if we use g, instead of g+, in

eq.(2.8), the solution will satisfy ul(r) = Pl(r) + tan ηl Ql(r) for r > r0. This means that

the difference between g and g+ is only in the normalization of the solution or, in other

words, in the asymptotic boundary conditions. Note that the analytic properties of g and

g+ nevertheless are quite different. For example, g+ is analytic in the upper half complex

plane of the physical energy-sheet while g is not.

2.4. Differential equation for the Green function

We introduce a Green function which satisfies an inhomogeneous differential equation as

is the case of usual Green functions for the linear differential equations;

d2gl(r, r′)
dr2

+
[
E − l(l + 1)

r2

]
gl(r, r′) = δ(r − r′). (2.9)

The discontinuity arising at r = r′ in the first derivative Pl(r<)Ql(r>) yields the δ-function

on the r.h.s. of eq.(2.9).
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2.5. Eigenfunction expansion

Seemingly a quite different expression of the radial Green function is obtained by

introducing an eigenfunction expansion of the Green function. A set of eigenfunctions

{Pl(r;En)} are defined by the radial Schrödinger equation eq.(1.6) with a boundary

condition wl(R) = 0 at r = R > r0. In the limit R � 1, the energy eigenvalues En’s

of Pl(r;En) satisfy (see eq.(1.9))

√
En R = nπ +

lπ

2
. (2.10)

Expanding g(r, r′) as

g(r, r′;E) =
∑

n

Gn(r′)Pl(r;En) (2.11)

and inserting it into eq.(2.9), we obtain

g(r, r′;E) =
∑
n

P ∗
l (r

′;En)Pl(r;En)
E − En

, (2.12)

where we assume that Pl is normalized as

∫ R

0

|Pl(r;En)|2 dr = 1. (2.13)

2.6. Radial Green function in general cases

Though all the arguments so far have regarded the free space as the reference system, the

whole story goes as well for any other choice of the reference system. Thus if we take the

system described by the Schrödinger equation with a potential term, eq.(1.5), as a reference

system, we will obtain the Green function describing the propagation of the electron waves

in the system with a central, spherical potential. The expression for such Green functions

clearly has the same form as that for the free space Green function. In the later sections we

will refer to such general cases by the same formulae, simply replacing Pl(r;E), Ql(r;E)

and R±
l (r;E) by the corresponding radial wave functions obtained in each case.
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3. Free space Green’s function

3.1. Real space representation

The free space Green function is defined by the differential equation

(∇2 + E)g(r , r ′;E) = δ(r − r ′), (3.1)

whose momentum space representation

(−k2 + E)g(k ;E) = 1 (3.2)

readily gives the solution

g(r , r ′;E) =
∫

d3k

(2π)3
exp [ik · (r − r ′)]

E − k2
. (3.3)

Equation (3.3) is nothing but the eigenfunction expansion of the Green function. The

integration on the r.h.s is easily performed as

(r.h.s. of eq.(3.3)) =
1

(2π)3

∫ ∞

0

k2dk

∫ π

0

sin θdθ

∫ 2π

0

dϕ
exp(ik|r − r ′| cos θ)

E − k2

=
1

4π2|r − r ′|
∫ ∞

−∞
kdk

sin(k|r − r ′|)
E − k2

= −exp(i
√

E|r − r ′|)
4π|r − r ′| . (3.4)

In the last expression the limit E + iδ (δ → 0), corresponding to the outgoing-wave

boundary condition (retarded Green function), is assumed.

3.2. Partial wave expansion

Partial wave expansion of the free space Green function is obtained from the similar

expansion of the plane waves:

exp(ik · r ) = 4π
∑
L

iljl(kr)YL(k̂ )YL(r̂ ) = 4π
∑
L

il
Pl(r;E)

kr
YL(k̂ )YL(r̂ ) (3.5)

(notice: Pl in eq.(3.5) are not the Legendre polynomials.) Here YL are the real spherical

harmonics with the usual notation (use cosmφ and sinmφ instead of exp(imφ) for real
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harmonics) and L represents (l,m). By substituting the exponential term in eq.(3.3) and

performing the angular part integration, we obtain

g(r , r ′;E) =
2

πrr′
∑
L

∫ ∞

0

dk
Pl(r;E)YL(r̂ )Pl(r′;E)YL(r̂ ′)

E − k2

=
∑
L

YL(r̂ )GL(r, r′;E)YL(r̂ ′) (3.6)

By expanding the radial Green function g(r, r′;E) by the radial eigenfunctions

PL(r;En) satisfying the boundary condition PL(R;En) = 0, where R is some fixed large

value (R � 1, see Sec. 2), and using the relation

∑
n

−→ R

π

∫ ∞

0

dk and
∫ R

0

P 2
L(r; k

2)dr −→ R

2
, (3.7)

where k = {nπ + (lπ/2)}/R, both being valid for R � 1, we find

GL(r, r′;E) =
g(r, r′;E)

rr′
. (3.8)

Finally, using the expression for g(r, r;E) given in Sec. 2 we obtain the partial wave

expansion of g(r , r ′;E):

g(r , r ′;E) = −
√

E
∑
L

YL(r̂ )
(

Pl(r<;E)√
Er<

) (
R+

l (r>;E)√
Er>

)
YL(r̂ ′)

= −i
√

E
∑
L

JL(r<;E)HL(r>;E), (3.9)

where we define

JL(r;E) = jl(
√

Er)YL(r̂ ) (3.10)

and

HL(r;E) = h
(1)
l (

√
Er)YL(r̂ ). (3.11)

3.3. General cases

Similarly the Green function of the system with a central, spherical potential may be

expressed (see the last paragraph of Sec. 2) as

G(r , r ′;E) = −
√

E
∑
L

YL(r̂ )
(Pl(r<;E)√

Er<

) (R+
l (r>;E)√

Er>

)
YL(r̂ ′)

= −i
√

E
∑
L

JL(r<;E)HL(r>;E), (3.12)
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where Pl and R+
l = Ql + iPl are the regular and the irregular solution of the radial

Schrödinger equation, eq.(1.5), and the definition of JL and HL are understood; Pl and

Ql (hence Pl and R+
l ) satisfy the Wronskian relation

W [Pl,Ql] =
√

E. (3.13)

4. Multiple scattering by muffin-tin potentials

4.1. Integral equation for the Green function

Suppose that the system is composed of an assembly of non-overlapping spherical potential

(muffin-tin potential) centered on each lattice site of a crystal.

The crystal Green function G(r , r ′;E) can be calculated from the free space Green

function g(r , r ′;E) by

G(r , r ′) = g(r , r ′) +
∫

dr ′′ g(r , r ′′)V (r ′′)G(r ′′, r ′). (4.1)

Hereafter, the explicit notation of the energy dependence of the Green function, etc. is

omitted for brevity.

4.2. Cell-centered expansion of the Green function

In eq.(4.1) the potential V (r ) denotes the assembly of muffin-tin potentials. Practically,

eq.(4.1) can not be used for the calculation of G because of the convergence problems.

Instead we introduce the cell-centered representation of eq.(4.1). First we consider the

cell-centered representation of g;

g(r +R m, r ′ +R n) = g(r , r ′ +R n −R m)

= −
√

E
∑
L

JL(r )HL(r ′ +R n −R m) ( form �= n). (4.2)

Using the addition theorem for H,

H(x + x ′) = 4π
∑
L′L′′

il−l′+l′′CLL′L′′JL′(x <)HL′′ (x >), (4.3)
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where CLL′L′′ is the Gaunt number

CLL′L′′ =
∫

dr̂YL(r̂ )YL′ (r̂ )YL′′ (r̂ )

and x > and x< is the bigger and the smaller (in the absolute value) of x and x ′, we obtain

g(r +R m, r ′ +R n) =
∑
LL′

JL(r )gmn
LL′JL′(r ′) ( form �= n), (4.4)

where

gmn
LL′ = 4πi

√
E

∑
L′′

il−l′+l′′CLL′L′′HL′′ (Rm −R n). (4.5)

Defining gmm
LL′ = 0, cell-centered representation of g may be expressed as

g(r +R m, r ′ +R n) = δmng(r , r ′) +
∑
LL′

JL(r )gmn
LL′JL′(r ′). (4.6)

Similarly the crystal Green function has the cell-centered representation

G(r +R m, r ′ +R n) = δmnGm
s (r , r ′) +

∑
LL′

J m
L (r )G

mn
LL′J n

L′(r ′). (4.7)

Here Gm
s is the Green function for the system of a single muffin-tin potential V m at m-th

site given by

Gm
s (r , r ′) = −i

√
E

∑
L

J m
L (r<;E)Hm

L (r>;E), (4.8)

which is exactly the same Green function as defined by eq.(3.12).

4.3. Dyson-type equation for multiple scattering

In eq.(4.7) the second term represents the contribution of the multiple scattering (or “back

scattering”) to the Green function and giving rise to the band structure. The relation

between Gmn
LL′ and gmn

LL′ is obtained from the cell-centered representation of eq.(4.1). By

direct insertion of eqs.(4.6) and (4.7) into eq.(4.2) and using the integral equations which

are satisfied by J m
L and Gm

s for the single muffin-tin potential V m, it is proven that Gmn
LL′

is related to gmn
LL′ by

Gmn
LL′ = gmn

LL′ +
∑

L′′m′
gmm′

LL′′ tm
′

L′′Gm′n
L′′L′ . (4.9)
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For periodic systems eq.(4.9) is solved by Fourier transform as

GLL′ (k ) =
∑
L′′

gLL′′(k ) [1− tg(k )]−1
L′′L′ . (4.10)

The crystal Green function is then given by

G(r + R m, r ′ +R n) = δmnGm
s (r , r ′) +

∑
LL′

J m
L (r )

×
∫

τ

dk

τ
exp(−ik · (R m −R n))

∑
L′′

gLL′′(k ) [1− tg(k )]−1
L′′L′ J n

L′(r ′), (4.11)

where τ is the Brillouin zone volume.

5. Band structure calculations

5.1. Traditional KKR method

Standard KKR band structure calculation is performed by finding the zero of the

determinant of the matrix appearing in eq.(4.11) (called KKR matrix) for each k ;

det |δLL′ − tL(E)gLL′ (k ;E)| = 0. (5.1)

This procedure gives the energy eigenvalues as a function of k and hence determines an

energy dispersion relation E(k ). The reason why the energy eigenvalues are obtained

in this way is the following: The zeros of the KKR matrix gives the poles of the Green

function (it actually is a one-to-one correspondence); each pole however corresponds to

the eigenstate of the Hamiltonian, as understood from the eigenfunction expansion of the

Green function.

In actual calculations, a numerical difficulty arises when the E(k ) falls near the free-

state branches or the atomic energy levels. Both the free states and the atomic states

cause poles in the determinant (poles of the structural Green function gLL′ (k ;E) or those

of the t-matrix), changing the sign of the determinant. This can be a big trouble (however

difficult to imagine!) in a root-finding procedure. For this reason, the KKR-method is

sometimes referred to as an unstable method. Though such a statement may not be quite

faire, it certainly is true that careless use of KKR sometimes leads to funny conclusions.
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5.2. An alternative

A more direct way to obtain the electronic structure may be to calculate the crystal Green

function following eq.(4.11). Such a method is especially attractive because it enable us

to apply the KKR technique to various other classes of problem, e.g., impurity problems,

disordered alloys, surfaces, interfaces, LEED states, and other spectroscopic properties.

The k-space integration appearing in eq.(4.11), however, causes a tough problem: Since

the imaginary part of the integrand is the δ-function, it is very hard to perform the

integration literally (actually impossible!). A conceivable way to overcome this problem is

to work with complex energies. For the complex energy the integrand, as a function of k ,

becomes quite dull and the integration can be performed accurately.

Such a trick is possible since, first, the back scattering term is the difference between

two Green functions, both of them being analytic, and hence analytic in the upper complex

half plane and, secondly, all we need in the self-consistent band structure calculation is not

the Green function but its energy integral. Owing to these facts, we can safely deform the

energy integration path toward the upper complex plane and still can hold all necessary

information. This also increases the accuracy of the energy integration because the Green

function is quite structureless off the real axis as a function of E.

Contrary to the traditional method mentioned in the previous subsection, this

alternative way is free from the spurious poles. Moreover numerical steps needed for

this procedure increase, roughly speaking, as N2, where N is the number of atoms per

unit cell, which is compared with N3 needed for the traditional method.

Another big advantage of this method is that the procedure is quite efficiently

vectorized in the sense of the vector processing of the supercomputers. This point, though

nothing much physics, is important in actual calculations.

5.3. Total-energy calculation

Once we obtain the Green function we can calculate, in principle, all the ground state

electronic properties in the framework of the muffin-tin potential model. For instance, the

spin dependent local charge distributions are calculated from the imaginary part of energy

integral of the site diagonal Green function:

ρ(r ) = − 1
π
�

∫ EF

−∞
dEG(r , r ;E), (5.2)
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where G(r , r ;E) is given by eq.(4.11) with m = n = 0. In order to calculate the total

energy of the system we exploit the muffin-tin charge model where the spherical symmetric

charge distribution inside the muffin-tin sphere and the uniform charge distribution for

interstitial region is assumed. In this case we can express the total energy per atom as a

sum of various separate contributions:

Etot = Eband − Epot + Estat + Exc (5.3)

To calculated the band energy, we introduce a function Z(E), whose imaginary part gives

the total number of states (per atom) below a real energy E:

Z(E) =
∫

τ

dk

τ

{
ln det | − E + (k + g )2|+ ln det |1− tg(k ;E)|}

− ln det
∣∣∣∣exp(iηL(E))

ΛL(E)

∣∣∣∣ (5.4)

Here ΛL(E) is defined by eq(1.19), giving a normalization for the phase shift ηL. Such

a normalization of the phase shift makes the analytic continuation of Z(E) to the upper

complex half plain possible; the procedure removes all singularities which exp(iηL(E)) will

have in the upper half plain at the resonances in the single site scattering.

The band energy is now calculated by integrating Z(E) with respect to E up to the

Fermi level:

Eband = − 1
π
�

{
Z(EF)EF −

∫ EF

−∞
Z(E)dE

}
(5.5)

We subtract from the band energy the potential energy

Epot =
∫ r0

0

r2drρ(r)V 0(r), (5.6)

which is the expectation value of the single site potential at 0-th site V 0, to obtain the

kinetic energy of the non-interacting system in the sense of the local density functional

theory. The electrostatic energy Eelectrostatic (par atom, in atomic unit) is obtained as

Estat = 32π2

∫ r0

0

dr rρ(r)
∫ r

0

dr′ r′2ρ(r′)− 8π Q

∫ r0

0

rρ(r)dr

− 1
2

C
Q2

out

a
, (5.7)

where a is the lattice constant and the constant C , depending on the crystal structure,

is given as, e.g., C =4.8320664, 4.085521 and 3.1166857 for fcc, bcc and sc lattice,

13



respectively; Q is the nuclear charge and Qout is the number of electrons per atom

accumulated at the interstitial region, i.e.,

Qout = Q −
∫ r0

0

r2drρ(r). (5.8)

The exchange-correlation energy (per atom) is given by the LSD approximation as

Exc =
∫ r0

0

r2drρεxc(ρ) +Qoutεxc(ρout), (5.9)

where εxc is the exchange-correlation energy suitable for the homogeneous electron gas.

All the core contributions should be included in the above expression.

5.4. Pressure

For pressure we use a mixture of the pressure cell-boundary relation of Liberman–Pettifor

and the usual expression which relates the pressure to a sum of twice the kinetic energy

and the potential energy with an additional exchange-correlation contribution. We apply

the former inside the muffin-tin sphere and use the latter for the interstitial region:

3PΩ =
∑
L

∫ EF

−∞
dE ρL(r0, E)r0

{
(E − V (r0)) r2

0 + (DL − l)(DL + l + 1)
}

+ Eband −
∑
L

∫ EF

−∞
dE E

∫ r0

0

r2dr ρL(r,E)

− 4πr3
0ρ(r0)

{
εxc

(
ρ(r0)

) − µxc

(
ρ(r0)

)}
− 1
2

C
Q2

out

a
− 3Qout {εxc(ρout)− µxc(ρout)} (5.10)

Here, ρL(r,E) is the partial density of states inside the muffin-tin sphere, i.e., the L-

th component of the negative imaginary part of the Green function divided by π (see

eqs.(4.11) and (5.2)), DL = r0J ′
L(r0 , E)/JL(r0, E) is related to the logarithmic derivative

of the radial wave functions at r = r0 and µxc is the exchange correlation potential.

An advantage of this mixture is that in this way we can avoid the numerical problem

caused by a big cancellation between kinetic and potential energies without introducing

the atomic sphere approximation which the Liberman–Pettifor approach (usually used in

LMTO) had to use for a surface integral. Furthermore, we can use this method both for

non-relativistic and relativistic cases. The usual treatment, on the otherhand, fails for a
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relativistic case since the sum of twice the kinetic energy and the potential energy never

corresponds to the energy cost for the volume dilation in this case. The reason why the

present method works even for the relativistic treatment is that we calculate the pressure

at the muffin-tin sphere from the momentum flow across the sphere; the procedure is valid

both for relativistic and non-relativistic cases. For the interstitial region the relativistic

effects are not important any more, which allows us to apply the second method. A

key point is that we need not use the atomic sphere approximation, in contrast to the

Liberman–Pettifor approach, for the second method and thus can avoid the additional

approximation.

6. Application of the KKR method

6.1. Impurity problems

Suppose an impurity atom located, say, at the origin is embedded in an otherwise perfect

host crystal. Now let us assume that the potentials at the neighboring host sites are not

affected by the presence of the impurity atom (single site approximation). In this case, all

we have to know is the site diagonal Green function at the origin G(r , r ), where G is given

by eq.(4.7). This problem is immediately solved if the back scattering term of eq.(4.7) for

the perfect host crystal G̃00
LL′ (i.e. m = n = 0) is known:

G00
LL′ =

∑
L′′

G̃00
LL′′

[
1− (timpurity − thost) G̃00

]−1

L′′L′
, (6.1)

where

G̃00
LL′ =

∫
τ

dk

τ
G̃LL′(k ) =

∫
τ

dk

τ

∑
L′′

gLL′′(k ) [1− thostg(k )]
−1
L′′L′ (6.2)

may be calculated for the host crystal once and while. The above treatment might not

be enough when the perturbation caused by the impurity extends beyond the single site.

More sophisticated treatment which can deal with not only the impurity site but also the

surrounding host sites simultaneously is required in these cases; the extension of eq.(6.1)

is rather straightforward.

6.2. KKR-coherent potential approximation

For disordered systems, the coherent potential approximation (CPA) is one of the most

efficient way to solved the problem. What are discussed about the disordered systems are
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averaged properties. In the present context, it is the configuration average of the Green

function. In CPA, averaged Green function is expressed in terms of the effective medium; it

is the assembly of the fictitious atoms whose atomic potential is specified by the coherent

t-matrix t̃(E). Once the coherent t-matrix is known, any ground state properties are

calculated within the single site approximation (actually it is proven to be the best single

site treatment).

To determine the coherent t-matrix, we consider the following impurity problem: Let

the disordered system be A1−xBx. Suppose we put either A or B atom in the effective

medium as an impurity. The impurity problems in these cases are solved if t̃ is known (see

the preceding subsection); the site diagonal Green function is then given by

G
A(or B)
LL′ =

∑
L′′

G̃00
LL′′

[
1− (tA (or B) − t̃) G̃00

]−1

L′′L′
, (6.3)

where

G̃00
LL′ =

∫
τ

dk

τ
G̃LL′(k ) =

∫
τ

dk

τ

∑
L′′

gLL′′ (k )
[
1− t̃g(k )

]−1

L′′L′ . (6.4)

Now the CPA prescription determining t̃ is

(1− x)GA
LL′ + xGB

LL′ = G̃00
LL′ . (6.5)

In other words, the t̃ should be determined in such a way that the scattering disappears

if the single site scattering by A and by B impurity located at the origin in the effective

medium is configurationally averaged.

All the average quantities are easily calculated if t̃ is obtained by solving the above

self-consistent equation. As for the problems associated to the numerical treatment of the

CPA equation and some efficient techniques to get the procedure run, see elsewhere.
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